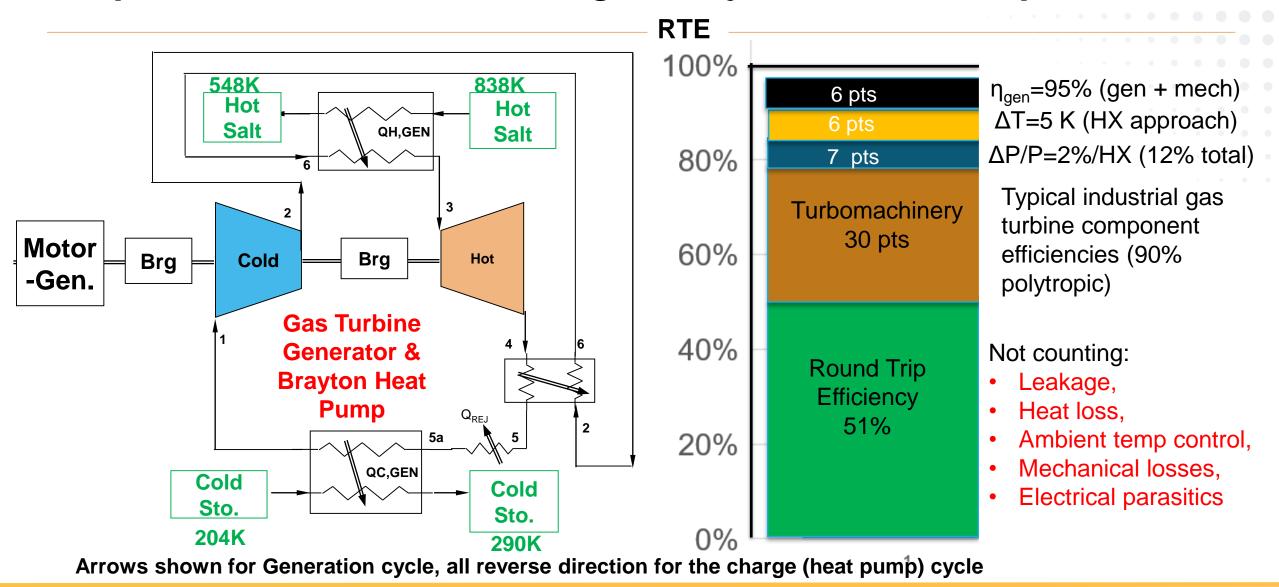


Reversing Turbomachine to Enable Laughlin-Brayton Cycle for Thermally-Pumped Electrical Energy Storage



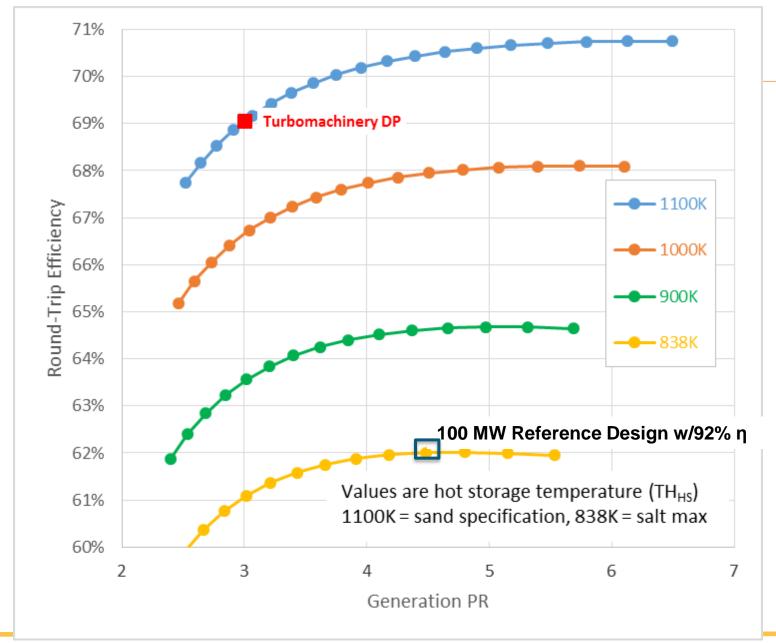
Brayton Energy, LLC Massachusetts Institute of Technology, Gas Turbine Lab

Project Vision

Exploring new aero-mechanical regimes toward turbomachinery efficiency improvement for a novel Brayton cycle energy storage

Pumped Thermal-Electric Storage: Very Sensitive to Imperfections

Sensitivity parameters


Quantity	Symbol	Baseline	∆ Applied	∆ Effy (pts)
Gen Compressor Polytropic Effy	η_{comp}	92.0%	-1.0%	0.84%
Chg Compressor Polytropic Effy	η_{comp}	92.0%	-1.0%	0.51%
Gen Turbine Polytropic Effy	η _{turb}	93.0%	-1.0%	0.82%
Chg Turbine Polytropic Effy	η _{turb}	93.0%	-1.0%	0.48%
Gas-to-Salt HX Pressure Loss	Δp/p _{6,3}	1.1%	+1.0%	0.70%
Gas-to-Hexane HX Pressure Loss	$\Delta p/p_{5a,1}$	1.1%	+1.0%	0.64%
Recuperator HP Pressure Loss	Δp/p _{2,6}	1.7%	+1.0%	0.70%
Recuperator LP Pressure Loss	Δp/p _{4,5}	1.7%	+1.0%	0.64%
Heat-Rejection HX Pressure Loss	Δ p/p _{5,5a}	0.5%	+1.0%	0.46%
Gas-to-Salt HX Approach Temp	T _G - T _S HS	5.0K	+1.0K	0.19%
Gas-to-Hexane HX Approach Temp	T _G - T _{HX} cs	2.5K	+1.0K	0.38%
Recuperator Hot-Side Approach Temp	T ₄ - T ₆	10.0K	+1.0K	0.27%
Heat-Rejection HX Approach Temp	T _{5a} - T _{amb}	4.0K	+1.0K	0.11%

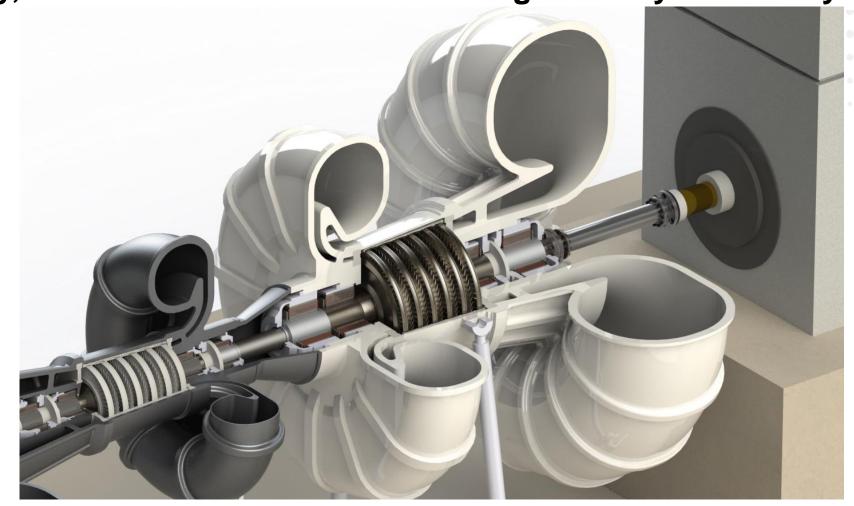
Δ~ polytropic efficiency point equates to 2.7 RTE pts

ΔP/P increase of 4 % is 3 RTE pts

Δ~ 2pct RTE for 10K

Sensitivity to hot source temperature (From solar salt to *GEN3*)

- Parametric study, varying only high-side temp and pressure ratio.
- Component performance nominal figures on next slides.
- For purposes of limiting stage count, below-optimum pressure ratio (PR_{gen} = 3) chosen for design of reversible counterrotating turbomachinery.

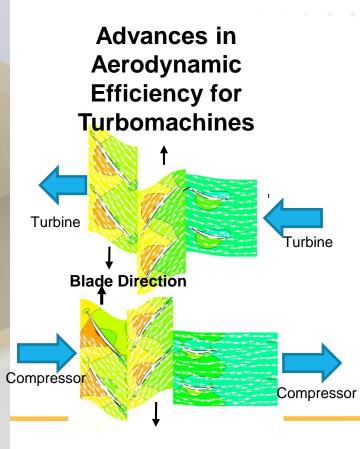

Exploring new directions in Turbomachinery aerodynamics.

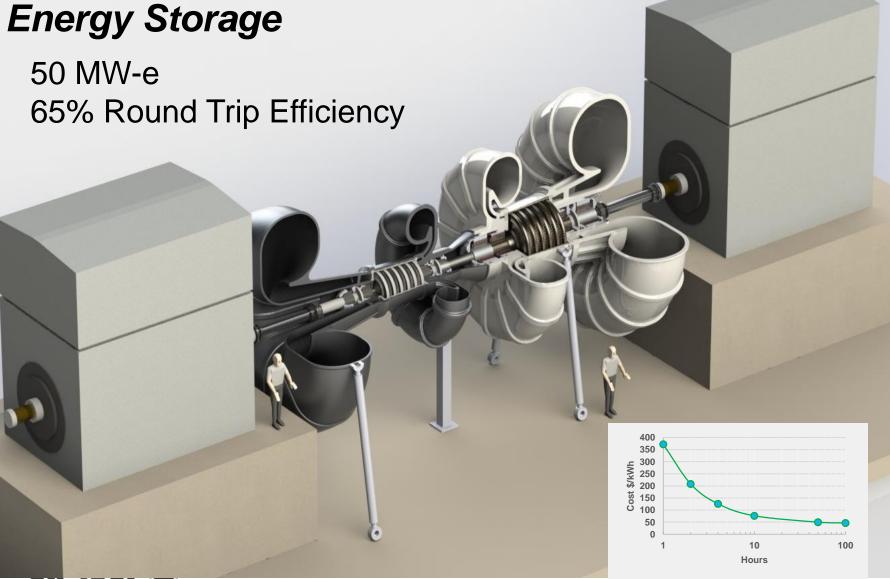
Design of a high efficiency, economical solution for the Laughlin-Brayton Battery

 Combine the Brayton cycle heat pump and the gas turbine generator into a single turbomachine – reducing cost and improving efficiency.

Approach:

- Counter-rotating axial compressor and turbine.
- Elimination of conventional stators and associated losses.
- Optimized blade shapes to minimize compromises associated with reversing flow.





Reversing Turbomachine to Enable Laughlin-Brayton Cycle for Thermally-Pumped Electrical

- Aero reviewed by four prominent teams: Final Detailed Design
 - PCA
 - Turbo Solutions
 - Brayton & ConceptNREC
 - MIT Gas Turbine Lab
- Thermal-structural
- Rotor system
 - Full rotor dynamic and structural design
 - Mag bearings complications

Alternator – a second generation product

- with our sponsored structural design by OEM
- Housing and Cooling thru PDR
- Brayton purchases only magnet sleeve and wound stator. Add shaft & housing

Power electronics- a second gen product

highly customized – needs re-quote

DAYS Progress on Cost vs Baseline

		Baseline	
DAYS 50 MW-e Summary		8.5MW	DAYS-50MW
Hot thermal storage	\$/kWh	59.0	19.4
Cold thermal storage	\$/kWh	41.0	21.0
TOTAL Energy	\$/kWh	100.0	40.4
Turbomachinery	\$/kW	317.4	117.7
M/G/ power control	\$/kW	200.0	50.0
HX (recup + hot)	\$/kW	53.0	91.0
HX cold and heat rejection		not estimated	
BOP Mechanical Systems:			
ducting, piping, valves	\$/kW	141.6	70.8
TOTAL Power	\$/kW	712.0	329.4

Baseline

- Separate custom gen and charge turbomachines
- Molten salt & hexane

Brayton DAYS

- Single duel purpose (reversible) turbomachine
- Particle thermal storage+ water-alcohol or glycol

November 16, 2020 Insert Presentation Name

Technology needs for successful PTES

- Custom turbomachinery: it's a very low pressure ratio machine with atypical operating temperatures
- ► A dual purpose turbomachine: two separate units are too expensive
- Ultra-high aerodynamic efficiency; punishing impact of irreversibility
- ► High temp thermal storage media: for safety and efficiency 700 to 800 °C (with no phase change at room temp)

November 16, 2020 Insert Presentation Name